Acquired resistance to rechallenge injury after acute kidney injury in rats is associated with cell cycle arrest in proximal tubule cells.

نویسندگان

  • Takamasa Iwakura
  • Yoshihide Fujigaki
  • Tomoyuki Fujikura
  • Naro Ohashi
  • Akihiko Kato
  • Hideo Yasuda
چکیده

Rats that have recovered from severe proximal tubule (PT) injury induced by uranyl acetate (UA), a toxic stimulus, developed resistance to subsequent UA treatment. We investigated cell cycle status and progression in PT cells in relation to this acquired resistance. Fourteen days after pretreatment with saline (vehicle group) or UA [acute kidney injury (AKI) group], rats were injected with UA or lead acetate (a proliferative stimulus). Cell cycle status (G0/G1/S/G2/M) was analyzed by flow cytometry. The expression of cell cycle markers, cyclin-dependent kinase inhibitors, and phenotypic markers were examined by immunohistochemistry. Cell cycle status in PT cells in the AKI group was comparable to those of the vehicle group. However, more early G1-phase cells (cyclin D1- or Ki67-) and p21+ or p27+ cells were found in the PT of the AKI group than in that of the vehicle group. UA induced G1 arrest and inhibited S phase progression with earlier dedifferentiation and less apoptosis in PT cells of the AKI group. Lead acetate induced proliferation without dedifferentiation but with delayed G0-G1 transition and inhibited S phase progression in PT cells in the AKI group. Sustained p21 and increased p27 expression in PT cells were found in the AKI group in response to UA and lead acetate. PT cells in the AKI group inhibited cell cycle progression by enhanced G1 arrest, probably via p21/p27 modulation as an injury or proliferation response, resulting in cytoresistance to rechallenge injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of p21 modifies the response of cortical proximal tubules to cisplatin in rats.

The purpose of this study was to evaluate whether upregulated p21, a cell cycle-inhibitory protein, contributes to cisplatin (CDDP)-induced acute renal failure (ARF) and to acquired resistance to rechallenge injury with CDDP in rats. ARF was induced in rats by injection of CDDP (5 mg/kg) and rechallenge injury to CDDP by the same dose of CDDP 14 days after the first CDDP injection. Rats were tr...

متن کامل

Cytoresistance after acute kidney injury is limited to the recovery period of proximal tubule integrity and possibly involves Hippo‐YAP signaling

Rat proximal tubule (PT) cells that have recovered from severe acute kidney injury induced by uranyl acetate (UA) develop cytoresistance to subsequent UA treatments. We reported that enhanced G1 arrest might contribute to cytoresistance. Herein, we examined these mechanisms by investigating Yes-associated protein (YAP), a regulator of cell number, and survivin, a downstream mediator of YAP that...

متن کامل

Maladaptive proximal tubule repair: cell cycle arrest.

Acute kidney injury (AKI) leads to worsening of chronic kidney disease (CKD), and CKD predisposes to the clinical entity of AKI. The tubules of the kidney play a central role in the fibrotic response, which ultimately leads to progressive kidney disease. The cellular mechanisms responsible for the epidemiological association between AKI and CKD are complex. In order to unravel characteristics o...

متن کامل

CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury.

Acute kidney injury (AKI) is common and urgently requires new preventative therapies. Expression of a cyclin-dependent kinase (CDK) inhibitor transgene protects against AKI, suggesting that manipulating the tubular epithelial cell cycle may be a viable therapeutic strategy. Broad spectrum small molecule CDK inhibitors are protective in some kidney injury models, but these have toxicities and ep...

متن کامل

Maladaptive Proximal Tubule Repair: Cell Cycle Arrest

Acute kidney injury (AKI) leads to worsening of chronic kidney disease (CKD), and CKD predisposes to the clinical entity of AKI. The tubules of the kidney play a central role in the fibrotic response, which ultimately leads to progressive kidney disease. The cellular mechanisms responsible for the epidemiological association between AKI and CKD are complex. In order to unravel characteristics o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 310 9  شماره 

صفحات  -

تاریخ انتشار 2016